Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants.

نویسندگان

  • Takayoshi Iwai
  • Shigemi Seo
  • Ichiro Mitsuhara
  • Yuko Ohashi
چکیده

Probenazole (PBZ) is the active ingredient of Oryzemate, an agrochemical which is used for the protection of rice plants from Magnaporthe grisea (blast fungus). While PBZ was reported to function upstream of salicylic acid (SA) in Arabidopsis, little is known about the mechanism of PBZ-induced resistance in rice. The role of SA in blast fungus resistance is also unclear. The recommended application period for Oryzemate is just before the Japanese rainy season, at which time rice plants in the field have reached the 8-leaf stage with adult traits. Thus, the involvement of SA in PBZ-induced resistance was studied in compatible and incompatible blast fungus-rice interactions at two developmentally different leaf morphology stages. Pre-treatment of inoculated fourth leaves of young wild-type rice plants at the 4-leaf stage with PBZ did not influence the development of whitish expanding lesions (ELs) in the susceptible interaction without the accumulation of SA and pathogenesis-related (PR) proteins. However, PBZ pre-treatment increased accumulation of SA and PR proteins in the eighth leaves of adult plants at the 8-leaf stage, resulting in the formation of hypersensitive reaction (HR) lesions (HRLs). Exogenous SA induced resistance in adult but not young plants. SA concentrations in blast fungus-inoculated young leaves were essentially the same in compatible and incompatible interactions, suggesting that PBZ-induced resistance in rice is age-dependently regulated via SA accumulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions.

Although allelic diversity of genes has been reported to play important roles in different physiological processes, information on allelic diversity of defense-responsive genes in host-pathogen interactions is limited. Here, we report that a pair of allelic genes, OsWRKY45-1 and OsWRKY45-2, which encode proteins with a 10-amino acid difference, play opposite roles in rice (Oryza sativa) resista...

متن کامل

Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice.

Rice blast, caused by Magnaporthe grisea, is the most important fungal disease of cultivated rice worldwide. We have developed a strategy for creating disease resistance to M. grisea whereby pathogen-induced expression of the afp (antifungal protein) gene from Aspergillus giganteus occurs in transgenic rice plants. Here, we evaluated the activity of the promoters from three maize pathogenesis-r...

متن کامل

Development of disease-resistant rice using regulatory components of induced disease resistance

Infectious diseases cause huge crop losses annually. In response to pathogen attacks, plants activate defense systems that are mediated through various signaling pathways. The salicylic acid (SA) signaling pathway is the most powerful of these pathways. Several regulatory components of the SA signaling pathway have been identified, and are potential targets for genetic manipulation of plants' d...

متن کامل

Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice.

Pseudomonas aeruginosa 7NSK2 induces resistance in dicots through a synergistic interaction of the phenazine pyocyanin and the salicylic acid-derivative pyochelin. Root inoculation of the monocot model rice with 7NSK2 partially protected leaves against blast disease (Magnaporthe grisea) but failed to consistently reduce sheath blight (Rhizoctonia solani). Only mutations interfering with pyocyan...

متن کامل

Possible role of phytocassane, rice phytoalexin, in disease resistance of rice against the blast fungus Magnaporthe grisea.

In addition to momilactone, phytocassanes A through E (diterpene phytoalexins) were detected in rice leaves in fields suffering from rice blast. Furthermore, phytocassane accumulation was most abundant at the edges of necrotic lesions, indicating that the phytoalexins prevent subsequent spread of the fungus from the infected site. In pot experiments the pattern of phytocassane accumulation in r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 48 7  شماره 

صفحات  -

تاریخ انتشار 2007